Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vet Med Sci ; 9(2): 982-984, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266230

ABSTRACT

Lumpy skin disease (LSD) is a viral disease that affects farm animals including water buffalo. It is caused by the contagious LSD virus, a member of the Poxiviridae family's Capripox genus. Skin sores are thought to be the most common site of infection since the virus may live for lengthy periods in lesions or scabs. The first clinical indications of LSD were described in Zambia, in 1929. Pakistan has also been afflicted by LSD, with a high number of animals infected at many cattle ranches in Karachi, 190,000 cases of LSD have been reported nationwide, with greater than 7500 deaths attributable to the illness. LSD has a huge influence on Pakistan's economic status, resulting in the loss of cattle and a decrease in milk output. The Ministry of Research and National Food Safety in Pakistan has formed a working group to create a framework for controlling the spread of LSD in cattle and buffalo. Official and private veterinarians, both field and slaughterhouse, veterinary students, farmers, cattle merchants, cattle truck drivers, and artificial inseminators should all participate in awareness efforts.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Cattle , Animals , Lumpy Skin Disease/epidemiology , Pakistan/epidemiology , Milk , Animals, Domestic , Buffaloes , Cattle Diseases/epidemiology
2.
Int J Environ Res Public Health ; 19(21)2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2099525

ABSTRACT

Since December 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading worldwide, triggering one of the most challenging pandemics in the human population. In light of the reporting of this virus in domestic and wild animals from several parts of the world, a systematic surveillance study was conceptualized to detect SARS-CoV-2 among species of veterinary importance. Nasal and/or rectal samples of 413 animals (dogs n= 195, cattle n = 64, horses n = 42, goats n = 41, buffaloes n = 39, sheep n = 19, cats n = 6, camels n = 6, and a monkey n = 1) were collected from different places in the Gujarat state of India. RNA was extracted from the samples and subjected to RT-qPCR-based quantification of the target sequences in viral nucleoprotein (N), spike (S), and ORF1ab genes. A total of 95 (23.79%) animals were found positive, comprised of n = 67 (34.35%) dogs, n= 15 (23.43%) cattle, and n = 13 (33.33%) buffaloes. Whole SARS-CoV-2 genome sequencing was done from one sample (ID-A4N, from a dog), where 32 mutations, including 29 single-nucleotide variations (SNV) and 2 deletions, were detected. Among them, nine mutations were located in the receptor binding domain of the spike (S) protein. The consequent changes in the amino acid sequence revealed T19R, G142D, E156-, F157-, A222V, L452R, T478K, D614G, and P681R mutations in the S protein and D63G, R203M, and D377Y in the N protein. The lineage assigned to this SARS-CoV-2 sequence is B.1.617.2. Thus, the present study highlights the transmission of SARS-CoV-2 infection from human to animals and suggests being watchful for zoonosis.


Subject(s)
COVID-19 , Cattle , Animals , Humans , Dogs , Horses , Sheep , COVID-19/epidemiology , SARS-CoV-2/genetics , Buffaloes , Pandemics , Mutation
3.
Comb Chem High Throughput Screen ; 24(10): 1769-1783, 2021.
Article in English | MEDLINE | ID: covidwho-918980

ABSTRACT

BACKGROUND: Novel coronavirus SARS-CoV-2 is responsible for the COVID-19 pandemic. It was first reported in Wuhan, China, in December 2019, and despite the tremendous efforts to control the disease, it has now spread almost all over the world. The interaction of SARSCoV- 2spike protein and its acceptor protein ACE2 is an important issue in determining viral host range and cross-species infection, while the binding capacity of spike protein to ACE2 of different species is unknown. OBJECTIVE: The present study has been conducted to determine the susceptibility of livestock, poultry and pets to SARS-CoV-2. METHODS: We evaluated the receptor-utilizing capability of ACE2s from various species by sequence alignment, phylogenetic clustering and protein-ligand interaction studies with the currently known ACE2s utilized by SARS-CoV-2. RESULT: In-silico study predicted that SARS-CoV-2 tends to utilize ACE2s of various animal species with varied possible interactions. The probability of the receptor utilization will be greater in horse and poor in chicken, followed by ruminants. CONCLUSION: Present study predicted that SARS-CoV-2 tends to utilize ACE2s of various livestock and poultry species with greater probability in equine and poor in chicken. The study may provide important insights into the animal models for SARS-CoV-2 and animal management for COVID- 19 control.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/virology , Pandemics , Receptors, Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/classification , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , Buffaloes , COVID-19/transmission , Camelus , Cats , Cattle , Chickens , Chiroptera , Dogs , Gene Expression , Goats , Horses , Humans , Molecular Docking Simulation , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Receptors, Virus/classification , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Sheep , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL